
Structure of Atom Module 2 Distribution of Electrons Valency Atomic number and Mass Number Isotopes And Isobars

Distribution of electrons in first 18 elements

Valency:

The number of electrons gained, lost or shared by the atom of an element so as to complete its octet in its valence shell or outermost shell (or duplet in case of elements having only K shell) is called the *valency* of the element.

Name of Element	Symbol	Atomic Number	al	Number of Neutrons	Number of Electrons	Distribution of Electrons				Valu-
Literature.						ĸ	L	M	N	псу
Hydrogen	H	1.	3		1	J	7		1	1.
Heltum	He	2	.2	2	2	2	+	-	-	0
Lithium	fa.	3	3	4	8	2	1		7.7	1
Beryllium	Be	4	4	. 5	4	2	3		+	2
Boron	11	- 5	. 5	6	8.	2	3	+	H	3
Carbon	c	0	6	- 6	- 6	2	4			4
Nitrogen	N	7	7	7	7	2	5	(4)	2	5
Oxygen	a	8	- 6	8	- 16	2	6	÷.	+	2
Fluorine	F	9	9.	10.	0	2	7			1
Neon	No	10	10	10	10	2	-	1	H	D
Bodium	Na	11	11	12	11	2	8	1	+	1
Mignestim	Mz	12	12	12	12	2	8	2	-	2
Aluminium	Al.	3.3	13	14:	13	2	8	-3	+	3
Silicon	86	14	14	14	14	2	. 8	4		4
Phosphorus	p.	15	18	16	15	2	8	5		3,5
Sulphur	35	10	16	16	16	2	. 15	6	Į.	2
Chlorine	CI	37	17	18	17	2	8	7	-	1
Angon	At	18	18	22	18	2	8	0	Y.	0

Atomic Number and Mass Number

■ What element an atom is depends on the number of protons in the atom's nucleus, called its **atomic number** (**Z**).

Z = number of protons

■ The mass number (A) of an atom is the number of protons and neutrons in its nucleus.

A = number of protons + number of neutrons

ATOMIC NUMBER

VERSUS

MASS NUMBER

Atomic number is the number of protons present in an atom

Not affected by number of neutrons

Isotopes have the same atomic number

Isobars cannot have the same atomic number

Always a smaller value than the mass number

Mass number is the sum of the number of protons and the neutrons of an atom

Affected by the number of neutrons

Isotopes have different mass numbers

Isobars have the same mass number

Always a larger value than the atomic number

Visit www.pediaa.com

Isotopes

proton number 8

mass

Oxygen-16

n = 8

8

Oxygen-17

$$n = 17 - 8$$
$$= 9$$

Oxygen-18

Isobar

- Same atomic mass
- Different elements

ISOTOPES VERSUS ISOBARS

Isotopes are different atomic structures of the same element

Atomic numbers are equal to each other

Atomic masses are different from each other

The same chemical element in different forms

Physical properties are different from each other

Isobars are chemical elements having the san atomic mass

Atomic numbers are different from each other

Atomic masses are equal to each other

Different chemical elements

Physical properties are often similar

Visit www.pediaa.com

Applications of Isotopes

Radioactive Isotope	Industrial Applications				
Americium-241	For uniform thickness when rolling steel and paper, determine location of oil wells				
Sodium-24	Oil well studies and to locate leaks in pipe lines				
Iridium-192	Test integrity of boilers and aircraft parts				
Uranium-235	Nuclear power plant and naval propulsion systems fuel, production of fluorescent glassware and colored wall tiles				
Californium-252	Determine moisture content of soil - important for road construction and building industries				

Radioactive Isotope	Applications in Medicine				
Cobalt-60	Radiation therapy to prevent cancer				
lodine-131	Locate brain tumors, monitor cardiac, liver and thyroid activity				
Carbon-14	Study metabolism changes for patients with diabetes, gout and anemia				
Carbon-11	Tagged onto glucose to monitor organs during a PET scan				
Sodium-24	Study blood circulation				
Thallium-201	Determine damage in heart tissue, detection of tumors				
Technetium-99m	Locate brain tumors and damaged he cells, radiotracer in medical diagnost (imaging of organs and blood flow studies)				

End of Module 2